
Future Generation Computer Systems 24 (2008) 860–869

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs
A scalable key management and clustering scheme for wireless ad hoc and
sensor networks
Jason H. Li a,∗, Bobby Bhattacharjee b, Miao Yu c, Renato Levy a

a Intelligent Automation Inc., 15400 Calhoun Drive, Ste 400, Rockville, MD, 20855, USA
b Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
c Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA

a r t i c l e i n f o

Article history:
Received 30 January 2007
Received in revised form
11 January 2008
Accepted 16 March 2008
Available online 12 June 2008

Keywords:
Key management
Clustering
Group communications
Ad hoc networks
Sensor networks

a b s t r a c t

This paper describes a scalable keymanagement and clustering scheme for secure group communications
in ad hoc and sensor networks. The scalability problem is solved by partitioning the communicating
devices into subgroups, with a leader in each subgroup, and further organizing the subgroups into
hierarchies. Each level of the hierarchy is called a tier or layer. Key generation, distribution, and actual
data transmissions follow the hierarchy. The distributed, efficient clustering approach (DECA) provides
robust clustering to form subgroups, and analytical and simulation results demonstrate that DECA is
energy-efficient and resilient against nodemobility. Comparingwithmost other schemes, our approach is
extremely scalable and efficient, providesmore security guarantees, and is selective, adaptive and robust.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Multicasting, as an efficient communication mechanism for
delivering information to a large group of recipients, has led to
the development of a range of powerful applications in both
commercial and military domains. Key management serves as the
crucial foundation to enable such secure group communications.
However, the large size of the serving group, combined with the
dynamic nature of group changes, poses a significant challenge on
the scalability and efficiency on keymanagement research [13,26].

Communication between arbitrary endpoints in an ad hoc
network typically requires routing over multiple-hop wireless
paths due to the limited wireless transmission range. Without a
fixed infrastructure, these paths consist of wireless links whose
endpoints are likely to be moving independently of one another.
Given the potentially large number of mobile devices, scalability
becomes a critical issue. In particular, wireless sensor networks
(WSNs) [1] comprise of a higher number of nodes scattered
over some region. Sensor nodes are typically less mobile, heavily
resource-constrained, irreplaceable, and become unusable after
failure or energy depletion. It is thus crucial to devise novel energy-
efficient solutions for topology organization and routing that are
∗ Corresponding author. Tel.: +1 301 294 5275; fax: +1 301 294 5201.
E-mail address: jli@i-a-i.com (J.H. Li).

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.03.007
scalable, efficient, and energy conserving in order to increase the
overall network longevity.

In our work, the scalability problem is solved by partitioning
the communicating devices into subgroups, with a leader in each
subgroup, and further organizing the subgroups into hierarchies.
Each level of the hierarchy is called a tier or layer. Key generation,
distribution, and actual data transmissions follow the hierarchy.
Communications are generally restricted within a subgroup at a
tier. Further, we describe an innovative clustering approach to
organize devices into subgroups.

Clustering protocols have been investigated for ad hoc and
sensor networks [10,14,17–20,24]. While these strategies differ in
the criteria used to organize the clusters, clustering decisions in
each of these schemes are based on static views of the network
topology; none of the proposed schemes, even equippedwith local
maintenance schemes, is satisfactorily resistant to node mobility
beyond trivial node movement. One of the purposes of this work
is to propose a clustering protocol that is resilient against mild to
moderate mobility where each node can potentially move.

In the hybrid energy-efficient distributed clustering approach
(HEED) [25], clusterhead selection is primarily based on the
residual energy of each node. The clustering process entails a
number of rounds of iterations; each iteration exploiting some
probabilistic methods for nodes to elect to become a clusterhead.
While HEED is one of the most recognized energy-efficient
clustering protocols, we argue that its performance can be further

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:jli@i-a-i.com
http://dx.doi.org/10.1016/j.future.2008.03.007

J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869 861
enhanced. In this work, we will present a distributed, energy-
efficient clustering approach (DECA). The protocol terminates
without rounds of iterations as required by HEED, which makes
DECA a less complex and more efficient protocol. In summary, our
approach has the following advantages.
Security. We guarantee that neither a passive nor an active adver-
sary can discover any other subgroup keys that do not belong to
them. Further, our scheme can protect the equally sensitive infor-
mation about group dynamics, whilemost current keymanagement
schemes are vulnerable to the group dynamics attacks.
Scalability. The approach addresses the scalability problem by ap-
plying the divide-and-conquer principle to organize a multicast
group into a hierarchy of subgroups and distribute the functional-
ity of the keymanagement service among the subgroups. The non-
overlapping nature of the subgroups ensures that the subgroup
multicasts occur in parallel and traverse disjoint parts of the de-
livery hierarchy, which makes the scheme extremely scalable.
Efficiency. The approach is efficient in terms of complexity of
re-keying operation during a member join or leave event and
key storage requirement. Further, DECA protocol renders more
robust and energy-efficient clustering. Such efficiency nicely
supports those members that only possess equipments with
limited capability.
Selective. Unlike current key management schemes, our approach
provides the capacity for selective communication between group
members. Such selectivity will apply naturally in many military
and commercial situations.
Robust and adaptive. The approach can handle multiple member
changes, such as subgroup partition and merge. Moreover, our
DECA scheme is robust against mild to moderate node mobilities.

We present the multi-tiered key management scheme in
Section 2, followed by the description of the efficient clustering
protocol in Section 3. We discuss related work in Section 4, and
conclude the paper in Section 5.

2. Multi-tiered key management

The basic ideas of multi-tiered key management are adapted
from a previous work by one of the authors [3], where the cluster
size at each tier is bounded between k and 2k − 1 for some
integer k, and better scalability over flat architectures has been
achieved. In practice, such a uniform bound across different tiers
may not be realistic. In this work, we loosen the cluster size
constraints and seek for insights on how we should deploy the
promising ideas of hierarchies and subgroups to actualmilitary and
civilian applications. Such work will provide practical guidelines
for directing deployment, in addition to its generalized theoretical
importance. We use simple examples to illustrate concepts and
ideas.

2.1. Description of the technical approach

2.1.1. Member hierarchy
Our key distribution scheme creates a member hierarchy. A

tier or layer comprises a set of members of the secure multicast
group in the same level of the hierarchy. Layers are numbered
sequentially,with the lowest layer of the hierarchy being layer zero
(denoted by L0).

A set of members in L0 can form a subgroup. The size of each
subgroup is restricted by a lower bound and an upper bound.
Each layer has one lower and upper bound that apply to all the
subgroups in that layer; different layers can have different sets of
bounds. There can be multiple subgroups in each layer. However,
the subgroups need to be disjoint, preferably in the sense of
Fig. 1. Initial arrangement of members.

spatial multicast delivery path, at each layer. This will provide the
maximum extent of parallelism, making the communications of
keying materials and data transmissions extremely scalable.

Within each subgroup, there is a leader that will take the
responsibility of key generation and distribution for that subgroup.
The subgroup leaders of all the subgroups in layer Li join layer Li+1.
As shown in Fig. 1, all ten members A–J are part of layer L0, which
has been partitioned into three subgroups: [ABC], [DEFJ], and [GHI].
The subgroup leaders, C, E, and H, join layer L1. In layer L1 only
a single subgroup [CEH] is formed. The leader, H, of the layer L1
subgroup joins layer L2 —the highest layer in this example. The
procedure terminates when there is only a single member in any
layer. Members of each layer of the subgroup hierarchy consist of
subgroup leaders from the immediate lower layer. Similarly, when
a subgroup leader is demoted in a certain layer Lj, it needs to be
removed from all the higher layers, Li, i > j, that it belongs to.
2.1.2. Authentication and access control

2.1.3. Layer keys and subgroup keys
A secret layer key is associated with each layer of the hierarchy.

A group member possesses a layer key for a specific layer if and
only if it is a member of a subgroup in that layer. Layer keys are
generated, on-demand, by a key server whenever the layer key
needs to be changed (e.g. a member joins or leaves any layer).
A secret subgroup key is associated with each subgroup. Once
again, a group member possesses a subgroup key for a specific
subgroup if and only if it is a member of that subgroup. The leader
of each subgroup is responsible for generating the subgroup key for
that subgroup. Finally, in all subgroups, a pair-wise key is shared
between the subgroup leader and each subgroup member.

Secure multicast typically requires a single entity where access
to the group is controlled. We call this entity the Authentication
and Access Control Server (ACS).

When a new member, A, joins the secure multicast group, it
registers and authenticates itself with the ACS. The ACS maintains
the authentication list for all the members of the whole group. As
part of the registration, A acquires a time-stamped credential CredA
from the ACS, which is a digital certificate signed by the ACS. Such
a credential should also contain an expiration time, after which A
will have to leave the group, or stay via another registration.

Subsequently, when A joins a subgroup with leader B, A and
B exchange the credentials to mutually authenticate each other
and establish the pair-wise key between them. In this work, the
members establish the pair-wise key using a computationally less
expensive variant of the Diffie–Hellman key exchange protocol
[15] by leveraging the authentication provided by the ACS, as
shown in Fig. 2.

2.1.4. Key distribution protocol
We assume that the subgroups have been created in some

appropriatemanner. The key distribution protocol ensures that the
layer key is only available to the members joined to that layer.

862 J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869
Fig. 2. A variant of Diffie–Hellman protocol.

Fig. 3. Subgroup re-keys operations.

Similarly, each subgroup has a secret subgroup key, known to only
all the members.
I. Notation and terminology

• Members and Member Sets
– S: The key server for all layer keys.
– ACS: Authentication and access control server.
– SG(u, j): Subgroup of layer Lj, to which member u belongs.
– LD(u, j): Leader of the subgroup in layer Lj to which member

u belongs.
– LDg(j): Leader of the subgroup g in layer Lj.
– UBj: Upper bound of subgroup size in layer Lj.
– LBj: Lower bound of subgroup size in layer Lj.
– u, v: Members of the secure multicast subgroup.

• Keys and Messages
– KG(t): The secret key of G at time t , where G is a set of

members. If G is a subgroup, then this is the subgroup key; if
G is a layer, then this is the layer key. If G is a pair of members,
then this is a key shared only by these two members.

– {m}e: Messagem is encrypted by the key e.
– 〈Unicast :: u → v : x〉: u sends a unicast message x to v.
– 〈Multicast :: u → G : x〉: u multicasts message x to a set of

members G, where G is either a subgroup or a layer.

II. Distributed re-keying operations

• Subgroup re-keys. For a subgroup g in layer j, the leader LDg(j)
obtains a new subgroup key Kg(t + 1) and unicasts it to each
member of the subgroup encrypted separately by the pair-wise
key of the leaderwith eachmember, as shown in Fig. 3. LetKp(v)
represent the pair-wise key between a subgroupmember v and
its leader LDg(j), and the operation is: ∀v ∈ g

〈Unicast :: LDg(j) → v : {Kg(t + 1)}Kp(v)〉. (1)

• Layer re-keys. The key server S generates a new layer key for
layer Lj, and multicasts it to all members of layer Lj+1. These are
the subgroup leaders of layer Lj. Each subgroup leader of layer
Lj then performs a subgroup multicast to all the members of its
subgroup in layer Lj, as shown in Fig. 4.

〈MCast :: S → Lj+1 : {KLj(t + 1)}KLj+1 (t)〉 (2)

∀v ∈ Lj+1, 〈MCast :: v → SG(v, j) :

{KLj(t + 1)}KSG(v,j)(t+1)〉. (3)

Note that KSG(v,j)(t + 1) is the most updated subgroup key
for the subgroup containing v.
Fig. 4. Layer re-keys operations.

Fig. 5. Selective transmission.

III. Re-keying algorithm for member joins and leaves
When a new member joins the secure multicast group, it is

inducted into some L0 subgroup.When amember leaves the group,
it leaves from all the layers it was joined to. Upon a membership
change, the re-keying algorithm does the following: for each
affected subgroup, do Subgroup re-keys, and then for each affected
layer, do Layer re-keys.

2.1.5. Data transmissions

Top-down data transmission. Suppose the top layer leader residing
at layer Lj wants to transmit data to the whole group. First, the
data gets encrypted using the subgroup key of which it belongs
at the immediate lower layer, i.e. Lj−1, and then it is multicast to
the subgroup. Second, each member of the subgroup in layer Lj−1
receives the data, and in turn re-multicasts the data to their lower
layer subgroups using corresponding subgroup keys. This process
continues until everyone receives the data.

In addition, the top layer leader can selectively communicate
with members at any layer. In general, any higher layer leader
can select to communicate with its subgroup members in the next
lower layer, and so on. For example, as shown in Fig. 5, H can
selectively send data only to E and subgroup [DEJF]. Such a scenario
naturally matches many military and commercial communication
cases.
Peer-to-peer data transmission. It is easy to observe that our scheme
also supports peer-to-peer communications in the same subgroup.
A member in some subgroup simply encrypts the data using the
shared subgroup key. Only the members in the same subgroup can
correctly receive the data. In this case, the sending party needs not
be the leader. Consequently, peer-to-peer data transmissions will
be limited within the subgroup; no re-multicast will happen.

2.2. Attack and security analysis

General attack and security analysis. Let A be a passive adversary,
who is never a subgroup member. We assume A eavesdrops on
all traffic in an arbitrary subgroup and receives all the encrypted
key information and data packets. A brute-force attack to find the

J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869 863
group key takes O(2k) operations where k is the length of the key;
A cannot do better than this. In addition, A cannot construct the
pair-wise key, K , by monitoring the network traffic and acquiring
the transmitted values gα and gβ without knowing the values of α
and β .

Let B be an active adversary, who has been a member of some
subgroup during some previous time period. In our protocol, when
B joins a subgroup, it cannot derive any previous group key by
doing better than exhaustive search, i.e. O(2k) operations. Now
assume B leaves the group and tries to read the subgroup traffic
after it has left. B has with it the old pair-wise key with the
subgroup leader, and possibly a set of layer keys. However, it
cannot read the subgroup traffic at a later time, since the scheme
updates all the keys that B previously knows per re-key operations.

Group dynamics security. We refer to group dynamics information
(GDI) [21] as information describing the dynamic membership of
a multicast group, such as the number of users as a function of
time, and the number of users who join or leave the service during
a time interval. In many group communications, group dynamics
information is confidential and should not be disclosed.

In most tree-based key distribution schemes [16,22,23], group
members can distinguish the key updating process due to user
join and that due to user departure, and the re-key message size
is closely related with the group size. As a result, attackers can
estimate the number of joins and leaves by examining the re-key
processes, and estimate the number of members from the re-key
message size.

In our scheme, however, the GDI can be protected. Since
the subgroup leaders establish keys for the subgroup members
through pair-wise key exchange, the subgroup members cannot
even obtain GDI of its own subgroup, let alone other subgroups
at other hierarchy. Our scheme is essentially immune to the GDI
attacks because, even with bulk re-keys, the re-keying messages
(or their sizes) do not contain any distinguishing information that
would divulge GDI to a corrupt insider. Note that the subgroup
leaders naturally obtain the dynamic membership information of
their subgroup and all subgroups below its layer. However, it can
be shown that the probability of an attacker being promoted high
in the layer hierarchy is exponentially small.

2.3. Performance analysis

We generalize the analysis of the previous work [3] to various
cluster sizes and summarize our results here without detailed
analysis.

Small cluster sizes. The minimum cluster size that can be used
(while still preserving the re-keying guarantees) is two. For very
small cluster sizes, the intra-cluster overhead decreases, but the
number of layers increases. The increased number of layers results
in higher processing at the key server, and may lead to higher
overhead in terms of cluster reconfiguration. In the worst case, the
minimum cluster size is two, and clusters split as soon as they have
more than three members, i.e. the maximum cluster size is three.

Theorem 2.1. For groups with small cluster sizes:

• The number of layers is exactly dlog2 Ne.

• The amortized communication cost of a member joining/leaving
the group is bounded by 2c + 4 + O(

log2 n
n).

• The average number of keys stored by a member is 4.
• The amortized cost of symmetric key processing due to a member

joining/leaving is ≤ 2. The average asymmetric key processing cost
is less than 1.
Large cluster sizes. When the minimum cluster size is relatively
large (say ≥ 10), the number of layers is correspondingly small.
Since the large minimum cluster size forces a larger maximum
cluster size (e.g. at least 20), there is relatively low inter-cluster
overhead from individual joins and leaves. Further, with higher
probability, the changes are restricted to a small number of layers.
However, the intra-cluster cost is high, since each change to
a cluster requires all cluster members to be re-keyed. Let the
minimum cluster size be k, and the largest cluster be of size C; we
have:

Theorem 2.2. For large groups:

• The number of layers is at most dlog2 Ne.

• The amortized communication cost of a member joining/leaving
the group is bounded by O(C) ∗ O(

k logk n
n).

• The average number of keys stored by a member is 2 +
C

k−1 .
• The amortized cost of symmetric key processing due to a member

joining/leaving is less than 2. The average asymmetric key
processing cost is less than 1.

The cluster reconfiguration cost depends entirely on the
dynamic sequence of joins and leaves to the multicast group.
Without a closed form description of the join/leave dynamics, it
is impossible to analytically quantify the effect of the join/leave
dynamics on the protocol overhead. Thus we seek to simulations
to analyze such scenarios.

2.4. Simulation results

2.4.1. Simple cluster dynamics
We first experiment with simplistic dynamic join and leave

sequences to get a basic understanding of how the protocol
behaves when increasing the maximum cluster size. Here, 256
nodes join the group initially, and thenwe simulate join (and leave)
events, with each event chosen uniformly at random. During each
event, between 1–4 nodes either join or leave. The clustering is
recomputed after each event, and we repeated the experiment for
differentmaximum cluster sizes.We use 4 as theminimum cluster
size in all experiments, unless otherwise noted. In Fig. 6, we plot
the number of merges and splits for maximum cluster size 8, over
1000 events. With the cluster bounds set to 4 and 8, there is a
steady set of clustermerges and splits as nodes join and leave. Note
further that the number of merges and splits closely track each
other. In Fig. 7, we plot the results from the same experimentwhen
the maximum cluster size is increased to 24. We observe that the
number of cluster merges and splits have reduced by more than
two orders of magnitude (this run required 16K events to produce
around 50 splits and merges whereas with the cluster size set to 8,
1000 events produced over 500 splits and merges!).

2.4.2. Batch updates
We consider a somewhat more representative scenario in this

section. In each experiment, the system has a ‘‘batch size’’ B. As
before, we consider a sequence of join and depart events. Each
event is either a join or a leave (uniformly at random), and the joins
and leaves are arbitrarily interleaved. After B events, the hierarchy
is recomputed.

In Table 1, we present the results from our batch experiments.
Here, 512 nodes initially join the system (and form the hierarchy),
and then 10,000 join (or leave) events are simulated. The batch
size is shown in the first column, and the rest of the columns are
similar to the previous results. The results motivate the following
observations:

864 J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869
Fig. 6. Maximum cluster size 8.

Fig. 7. Maximum cluster size 24.

• Batch updates clearly reduce the protocol overhead. When the
maximum cluster size is relatively small (twice the minimum
cluster size), then batching 100 updates can often reduce
overhead by 50% or more.

• Batch updates are most useful when the maximum cluster size
is small. Larger maximum sized clusters insulate the effects of
batch updates since each cluster can ‘‘absorb’’ more joins.

• As the minimum cluster size is increased (and the maximum
cluster size is not very close to the twice the minimum cluster
sizes), the effect of both batching and increasing cluster sizes is
minimal.

Thus, to minimize the dynamic overhead, the minimum cluster
size is a more important parameter, and has more effect than
maximum cluster size and batching updates. If the minimum
cluster size cannot be increased, then the maximum cluster size
should be at least thrice the minimum cluster size, or updates
should be batched.

3. Distributed efficient clustering approach

3.1. Problem statement

An ad hoc wireless network is modeled as a set V of
nodes that are interconnected by a set E of full-duplex directed
communication links. Each node has a unique identifier and has
at least one transmitter and one receiver. Two nodes are neighbors
and have a link between them if they are in the transmission range
of each other [6]. Nodes within the ad hoc network may move at
any time without notice; it is our goal that the clustering protocol
can still generate decent clusters under such mobility.

Let the clustering duration TC be the time interval taken by
the clustering protocol to cluster the network. Let the network
Table 1
Batch updates results for member joins and leaves

Batch Min. Max. Num. Merge Num. Split
size cl. size cl. size merges total splits total

1 4 8 2396 19 130 2 480 20 925
10 4 8 2218 17 684 2 292 19 466

100 4 8 1310 10 044 1 356 11 738
1000 4 8 282 2 050 386 3 513

1 4 12 188 1 852 246 3 012
10 4 12 219 2 189 276 3 387

100 4 12 165 1 693 233 2 913
1000 4 12 66 658 118 1 538

1 4 16 55 636 94 1 543
10 4 16 59 717 93 1530

100 4 16 38 457 89 1 481
1000 4 16 9 104 54 920

1 4 32 0 0 22 704
10 4 32 0 0 20 640

100 4 32 0 0 19 612
1000 4 32 0 0 17 544

1 8 16 752 12 857 780 13 533
10 8 16 793 13 527 820 14 234

100 8 16 446 7 470 475 8 283
1000 8 16 94 1 456 120 2 108

1 8 24 38 819 60 1 482
10 8 24 50 1 072 70 1 722

100 8 24 23 500 40 993
1000 8 24 9 187 27 678

1 8 32 7 190 23 737
10 8 32 3 74 25 803

100 8 32 3 86 19 611
1000 8 32 1 23 18 576

1 32 64 78 5 505 86 6 028
10 32 64 29 2 111 37 2 633

100 32 64 23 1 663 30 2 124
1000 32 64 5 330 12 801

1 32 96 1 72 5 480
10 32 96 1 73 5 480

100 32 96 2 140 5 480
1000 32 96 2 148 5 480

1 32 128 0 0 4 512
10 32 128 0 0 4 512

100 32 128 0 0 4 512
1000 32 128 0 0 4 512

operation interval TO be the time needed to execute the intended
tasks. In many applications, TO � TC. In general, nodes that travel
rapidly in the network may degrade the cluster quality because
they alter the node distribution in their clusters and make the
clusters unstable, possibly long before the end of TO. However,
research efforts on clustering should not be restricted only within
the arena of static or quasi-stationary networks where node
movements are rare and slow. Rather, for those applicationswhere
TO is not much longer than TC, we propose an efficient protocol
that generates clusters in ad hoc networks with mild to moderate
node mobility. One such example is related to fast and efficient
command and control in military applications, where nodes can
frequently move. In our model for sensor networks, though, the
sensor nodes are assumed to be quasi-stationary. Nodes are
location unaware and will be left unattended after deployment.
Recharging is assumednot possible, and therefore, energy-efficient
sensor network protocols are required for energy conservation and
prolonging network lifetime.

For an ad hoc or sensor network with nodes set V , the goal
of clustering is to identify a set of clusterheads that cover the
whole network. Each and every node v in set V must be mapped
into exactly one cluster, and each ordinary node in the cluster
must be able to directly communicate to its clusterhead. The
clustering protocol must be completely distributed meaning that
each node independently makes its decisions based only on local
information. Further, the clustering must terminate quickly and
execute efficiently in terms of processing complexity and message

J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869 865

1 For detailed analysis of the clustering protocol, the readers are referred to our
previous work [11,12].
exchange. Finally, the clustering algorithm must be resistant to
moderate mobility (in ad hoc networks) and at the same time
render energy-efficiency, especially for sensor networks.

3.2. DECA clustering algorithm

In DECA, each node periodically transmits a Hello message
to identify itself, and based on such Hello messages, each node
maintains a neighbor list. We define the score function at each
node as score = w1E + w2C + w3I , where E stands for node
residual energy, C stands for node connectivity, I stands for node
identifier, and weights follow

∑3
i=1 wi = 1. We put higher weight

on node residual energy in our simulations. The computed score is
then used to compute the delay for this node to announce itself
as the clusterhead. The higher the score, the sooner the node
will transmit. The computed delay is normalized between 0 and
a certain upper bound Dmax, which is a key parameter that needs
to be carefully selected in practice, like the DIFS parameter in IEEE
802.11. In our simulation, we choose Dmax = 10 ms and the
protocol works well. After the clustering starts, the procedure will
terminate after time Tstop, which is another key parameter whose
selection needs to take node computation capability and mobility
into consideration. In the simulation, we choose Tstop = 1 s.

The distributed clustering algorithm at each node is illustrated
in the pseudo code fragments. Essentially, clustering is done
periodically and at each clustering epoch, each node either
immediately announces itself as a potential clusterhead or it holds
for some delay time.

Upon receiving clustering messages, a node needs to check
whether the node ID and the cluster ID embedded in the received
message are the same; same node and cluster ID means that the
message has been transmitted from a clusterhead. Further, if the
receiving node does not belong to any cluster, and the received
score is better than its own, the node canmark down the advertised
cluster and wait until its scheduled announcement to send its
message.

I. Start-Clustering-Algorithm()

1 myScore = w1E + w2C + w3I;
2 delay = (1000 − myScore)/100;
3 if (delay < 0)
4 then bcastClstr (myId,myCid,myScore);
5 else delayAnnouncement ();
6 Schedule clustering termination.

II. Receive-Clustering-message(id, cid, score)
1 if (id == cid)
2 then if (myCid == NULL)
3 then if (score > myScore)
4 myCid = cid;
5 elseif (score > myScore)
6 then if (myId == myCid)
7 needConvert = true;
8 else markBestCluster();

III. actual-announcement()

1 bcastClstr (myId, myCid, score);

IV. Finalize-Clustering-Algorithm()

1 if (needConvert)
2 then if (!amIHeadforAnyOtherNode ())
3 then convtToNewClst ();
4 if (myCid == NULL)
5 thenmyCid = cid;
6 bcastClstr (myId, myCid, score);
If the receiving node currently belongs to some cluster, and
the received score is better than its own score, two cases are
further considered. First, if the current node receiving a better-
scored message is not a clusterhead itself, as an ordinary node, it
can immediately mark down the best cluster so far (line 8 in II)
and wait until its scheduled announcement. This node will stay
in its committed cluster after its announcement. On the other
hand, if the current node is a clusterhead itself, receiving a better
scored message (due to variant delays and/or synchronization
drifts) means that this node may need to switch to the better
cluster. However, cautions need to be taken here before switching
since the current node, as a clusterhead, may already have other
nodes affiliated with it. Therefore, inconsistencies can occur if it
rushes to switch to another cluster. In our approach, we simply
mark the necessity for switching (line 7 in II) and defer it to the
finalizing phase, where it checks to make sure that no other nodes
are affiliated with this node in the cluster as the head, before
switching can occur. It is noted that the switch process mandates
that a node needs to leave a cluster first before joining a new
cluster. Further, it is important to point out that since each node
announces itself according to the computed score, this second case
is really the exception, rather than the normal case. For example,
lower scored nodes may transmit earlier when synchronization
drifts among nodes are large. We include such exception handling
in DECA to achieve better robustness. In this (rare) case, the
conversion procedure incurs one more message transmission for
the converted node. In normal operations, however, each node
transmits only one message.

In the finalizing phase, where each node is forced to enter after
Tstop, each node checks to see if it needs to convert. Further, each
node checks if it already belongs to a cluster andwill initiate a new
cluster with itself as the head if not.

3.3. Correctness and complexity

The protocol described above is completely distributed. To
show the correctness and efficiency of the algorithm, we have the
following results.1

• Eventually DECA terminates.
• At the end of Phase IV, every node can determine its cluster and

only one cluster.
• When clustering finishes, any two nodes in a cluster are at most

two hops away.
• In DECA, each node transmits only one message during the

operation.
• The time complexity of the algorithm is O(|V |).

3.4. Performance evaluation

In this section, we evaluate the DECA protocol via simulations.
We use an in-house simulation tool called the agent-based ad
hoc network simulator (NetSim) to implement our protocol and
the protocols proposed by Krishna et al. [10], Lin and Gerla [14],
and HEED [25] for comparisons. Compared with other network
simulators (for instance ns-2), the most important feature of
NetSim is its capability of handling massive ad hoc wireless
networks and sensor networks.

In general, it is undesirable to create single-node clusters.
Single-node clusters arise when a node is forced to represent itself
(because of not receiving any clusterheadmessages). A clustermay
also contain a single node if this nodedecides to act as a clusterhead

866 J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869
Fig. 8. Ratio of number of clusters.

and all its neighbors register themselves with other clusterheads.
While other protocols will generate lots of single-node clusters as
node mobility gets more aggressive, our algorithm shows much
better resilience under such situations.

In our simulations, random graphs are generated so that nodes
are randomly dispersed in a 1000 m × 1000 m region and the
transmission range of each node is bound to 250m.We investigate
the clustering performance under different nodemobility patterns,
and the node speed ranges from 0 to 50 m/s. In particular, we
simulate the following scenarios withmaximum node speed set as
0, 0.1, 1, 5, 10, 20, 30, 40, and 50 m/s. For each scenario, each node
takes the same maximum speed and a large number of random
graphs are generated. Simulations are run and results are averaged
over these random graphs.

We have considered the following metrics for performance
comparisons: (1) the average overhead (in number of protocol
messages); (2) the ratio of the number of clusters to the number
of nodes in the network; (3) the ratio of the single-node clusters to
the number of nodes in the network; and (4) the average residual
energy of the selected clusterheads.

We first look at static scenarios where nodes do not move and
the quasi-stationary scenarios where the maximum node speed is
bounded at 0.1 m/s. We choose [14] proposed by Lin (LIN) as a
representative for those general clustering protocols, and choose
Krishna’s algorithm (KRISHNA) [10] to represent dominating-set
based clustering protocols. For the state-of-the-art, we choose
HEED [25] to compare with DECA.

Fig. 8 shows that KRISHNA has the worst clustering perfor-
mancewith the highest cluster-to-nodes ratio, while DECA and LIN
possess the best performance. HEED performs in between. In addi-
tion, all four protocols perform consistently under (very)mild node
mobility.

Both LIN and KRISHNA fail to generate clusters as we increase
the maximum node speed. This is expected. In LIN, a node will
not transmit its message until all its better-scored neighbors have
done so; the algorithm will not terminate if a node does not
receive a message from each of its neighbors. Node mobility can
make the holding node wait for ever. In KRISHNA, in order to
compute clusters, each node needs accurate information of the
entire network topology, facilitated by a network-wide link state
update which by itself is extremely vulnerable to nodemobility. In
contrast, we found that both HEED and DECA are quite resilient
to node mobility in that they can generate decent clusters even
when each node can potentially move independently of others.
The following figures compare the performance of DECA and HEED
under node mobility.

Figs. 9 and 10 shows the ratio of the number of clusters and
single-node clusters to the total number of nodes in the network.
Fig. 9. Ratio of clusters.

Fig. 10. Ratio of single-node clusters.

All nodes have the same transmission range of 250 m. In both
cases, DECA significantly outperforms HEED, with performance
gains around 40% in Fig. 9 and 200% in Fig. 10.

Fig. 11 shows that for DECA, the number of protocol messages
for clustering remains one per node, regardless of the node speed.
For HEED, the number of protocol messages is roughly 1.7–2
for every node speed. The fact that HEED incurs more message
transmissions is due to the possibly many rounds of iterations,
where each node in every iteration can potentially send a message
to claim itself as the candidate clusterhead [25].

Fig. 12 compares DECA and HEED with respect to the (normal-
ized) average clusterhead energy. Again, DECA outperforms HEED
with about twice the clusterhead residual energy. This is in accor-
dance with Fig. 11 where DECA consistently incurs fewer message
transmissions thanHEED. Reducing the number of transmissions is
of great importance, especially in sensor networks, since it would
render better energy efficiency and fewer packet collisions, e.g. in
IEEE 802.11 MAC.

We extend our simulations to investigate how DECA and HEED
perform under different node speeds and transmission ranges.
Fig. 13 shows that DECA performs quite consistently in terms
of cluster ratio under various node speeds, and the larger the
transmission range, the lower the cluster ratio (as expected). Such
observations can also be made in Fig. 14, where the cluster ratio
curves under different node speeds track each other quite closely,
and the ratio of clusters decreases as the transmission range
increases. Similar observations have also been made for HEED.

J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869 867
Fig. 11. Number of messages per node.

Fig. 12. Residual clusterhead energy.

Fig. 13. Cluster ratio versus speed.

Now we will show that DECA outperforms HEED significantly
for every transmission range used in simulations. Given themobil-
ity resilience, we pick 10 m/s node speed as a representative sce-
nario. Figs. 15 and 16 illustrate the simulation results comparing
DECA andHEED. It is obvious to see that DECA consistently incurs a
smaller ratio of clusters and higher percentage of non-single-node
clusters for every transmission range. In addition, it is interesting
to observe that the performance gain of DECA over HEED decreases
Fig. 14. Cluster ratio versus range.

Fig. 15. Cluster ratio of HEED and DECA.

Fig. 16. Non-single-node clusters percentage.

as the transmission range increases. This is particularly evident in
Fig. 16.

From Fig. 15 onemay conclude that a larger transmission range
is more preferable for better clustering performance. However,
it is generally undesirable to extend a node’s transmission range
in multi-hop wireless networks due to energy and interference
issues. To tackle this trade-off,wepropose the energy-conservative

868 J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869
Fig. 17. Protocol resilience against synchronization drifts–cluster ratio.

approach: select the smallest transmission range that brings about the
largest performance improvement.

For example, the ratio of clusters in Fig. 13 drops from about
0.55 to about 0.35 with range increases from 150 to 250 m. The
ratio drops only to about 0.25 if the range increases further to
350 m. As a result, it might not be worthwhile to increase the
range over around 250 m. This insight can be further validated
by Fig. 14, where we should choose the range with the steepest
slope in the figure, indicating the greatest improvement on the
clustering performance. Again,weneed to choose the range around
250m. Fig. 16 also indicates that beyond 250m transmission range,
the performance of DECA become ‘‘flat’’ and its gain over HEED
gets smaller. This energy-conservative approach is not only of
simulation interests; practical deployment of the DECA algorithm
should also follow such insights.

It can be observed that in DECA the dispersed delay timers
for clusterhead announcement assume the existence of a global
synchronization system. However, we can show that our DECA
scheme is in fact quite resilient against synchronization drifts.
It has been shown in [7] that synchronization errors can be
controlled within 10 µs for sensor nodes. We further relax this
time range, and Fig. 17 illustrates the simulation results. We can
easily observe that with 1 and 2 ms synchronization error, the
protocol performance tracks the case of perfect synchronization in
an indistinguishable manner.

4. Related work

4.1. On key management

In Group Key Management Protocol (GKMP) [8], a Group Key
Controller is responsible for performing all the security related
tasks including member join, deletion, and key generation and
distribution. Static keys – pair-wise shared between the Group Key
Controller and each group member – are used to establish a group
key. In Scalable Multicast Key Distribution (SMKD) [2], a single key
encrypting key and a single session encrypting key are distributed:
compromise of a single number will disclose these two keys, and
compromise the future group communication. So the re-keying
problem remains unsolved. Neither GKMP nor SMKD is viable for
re-keying large groups with dynamic membership.

A family of protocols has been proposed for key manage-
ment based on logical trees [16,22,23]. One well known scheme
that provably incurred sub-linear group re-keying overheads for
each membership change is the Logical Key Hierarchies (LKH)
scheme [23]. Essentially, the LKH scheme defines a logical hierar-
chy of keys distributed between different sets ofmembers. The leaf
nodes on the tree represent the different members, while the in-
termediate nodes are only logical and represent the different keys.
Each member possesses all the keys on its path to the root, which
serves as the group key. When amember leaves the group, all keys
on the path from this member to the root need to be changed.

While LKH is gaining wide popularity and there are various
research works based on the virtual key hierarchy (e.g. reducing
re-key messages, efficient one-way function tree, etc.), the
fundamental principles of LKH lead to several drawbacks. First,
there is no hierarchical structure in terms of group member
organization. The hierarchy is only for key distribution purposes.
All the group members in LKH are of the same leaf level. Second,
anymember can sendmessages to thewhole group or any selected
members. This can incur serious security risks. In addition, it is
noted that such LKH schemes are vulnerable to attacks on the
group dynamics information, which can be devastating if leaked
to military adversaries. Our scheme is resistant to such attacks.

4.2. On clustering protocols

Among clustering mechanisms in ad hoc and sensor networks,
dominating-set-based clustering [17–20] surfaces as one of the
most promising approaches. A subset of vertices in an undirected
graph is a dominating set if every vertex not in the subset is
adjacent to at least one vertex in the subset. Moreover, this
dominating set should be connected for ease of the routing process.

Sivakumar et al. [17–19] proposed a series of 2-level hierarchi-
cal routing algorithms for ad hoc wireless networks. The idea is
to identify a subnetwork that forms a minimum connected dom-
inating set (MCDS). In this approach, a connected dominating set
is found by growing a tree T starting from a vertex with the max-
imum node degree. Then, a vertex v in T that has the maximum
number of neighbors not in T is selected. Finally, a spanning tree is
constructed and non-leaf nodes form a connected dominating set.

Ref. [24] proposed localized algorithms that can quickly build
a backbone directly in ad hoc networks. This approach uses a
localized algorithm called themarking processwhere hosts interact
with others in restricted vicinity. This algorithm is simple, which
greatly eases its implementation, with low communication and
computation cost; but it tends to create small clusters.

Instead of constructing connected dominating sets, Lin and
Gerla [14] used node ID numbers to build clusters of nodes that are
reachable by two-hop paths. The distributed clustering algorithm
is initiated by all nodes that have the lowest ID numbers among
their neighbors. If all the lower ID neighbors sent their decisions
and none declared itself as a cluster initiator, the node decides to
create its own cluster and broadcasts its own ID as the cluster ID.
Otherwise, it chooses a neighboring cluster with the lowest ID, and
broadcasts such decision.

Similar to [14], Basagni [4] proposed to use nodes’ weights
instead of lowest ID or node degrees in clusterhead decisions.
Weight is defined by mobility related parameters, such as
speed. Basagni [5] further generalized the scheme by allowing
each clusterhead to have at most k neighboring clusterheads
and described an algorithm for finding a maximal weighted
independent set in wireless networks.

One of the first protocols that use clustering for network
longevity is the Low-EnergyAdaptive ClusteringHierarchy (LEACH)
protocol [9]. In LEACH, a node elects to become a clusterhead ran-
domly according to a target number of clusterheads in the network
and its own residual energy, and the energy load get evenly dis-
tributed among the sensors in the network. A limitation of this
scheme is that it requires all current clusterheads to be able to
transmit directly to the sink. Improvements to the basic LEACH al-
gorithms include multi-layer LEACH-based clustering and the op-
timal determination of the number of clusterheads that minimizes
the energy consumption throughout the network.

J.H. Li et al. / Future Generation Computer Systems 24 (2008) 860–869 869
None of the above algorithms intends to tackle the scenarios
where all nodes in the network can potentially move. Our
protocol handles such a challenge. The initial ideas were proposed
in [11], and a follow-up study focused on clustering performance
under lossy channels and synchronization errors [12]. This work
complements the previous efforts with enriched results and
insights under different node transmission ranges.

5. Conclusions

While many key management schemes suffer from scalability
problems, ourmulti-tiered keymanagement schemewas designed
to utilize the parallelism inherent in the multicast topology.
Though we have run simulations with 256 and 512 nodes;
simulations with more nodes are expected to produce similar
results. In addition, our scheme provides added security in that the
group dynamics can also be protected. Furthermore, our scheme
provides the capacity for selective group communication.

Our distributed clustering algorithm works with resilience to
node mobility and at the same time renders energy efficiency.
The algorithm terminates quickly, has low time complexity, and
generates non-overlapping clusters with good clustering perfor-
mance. Our approach is applicable to bothmobile ad hoc networks
and energy-constrained sensor networks. Combined together, our
scheme is powerful and general, and it can naturally fit into the
hybrid military/commercial communication infrastructure.

Acknowledgment

This work was partially supported by the Air Force Research
Laboratory, USA, grant FA8750-05-C-0161.

References

[1] I.F. Akyildiz, W. Su, Y. Sanakarasubramaniam, E. Cayirci, Wireless sensor
networks: A survey, Computer Networks 38 (4) (2002) 393–422.

[2] A. Balladie, Scalable multicast key distribution, RFC 1949, May 1996.
[3] S. Banerjee, B. Bhattacharjee, Scalable secure group communication over

IP multicast, in: Network Support for Group Communication, JSAC (2002)
(special issue).

[4] S. Basagni, Distributed clustering for ad hoc networks, in: Proc. of the 1999
International SymposiumonParallel Architectures, Algorithms, andNetworks.

[5] S. Basagni, D. Turgut, S.K. Das, Mobility-adaptive protocols for managing large
ad hoc networks, in: Proc of the ICC 2001, pp. 1539-1543.

[6] B.N. Clark, C.J. Colburn, D.S. Johnson, Unit disk graphs, Discrete Mathematics
86 (1990) 165–167.

[7] L. Elson, L. Girod, D. Estrin, Fine-grained network time synchronization
using reference broadcasts, ACM SIGOPS Operating System Review 36 (2002)
147–163.

[8] H. Harney, C. Muckenhirn, Group key management protocol (GKMP)
architecture, in: IETF RFC 2094, July 1997.

[9] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy efficient commu-
nication protocol forwirelessmicrosensor networks, in: Proc of the 3rdHawaii
International Conference on System Sciences, 2000, pp. 3005–3014.

[10] P. Krishna, N.N. Vaidya, M. Chatterjee, D.K. Pradhan, A cluster-based approach
for routing in dynamic networks, ACM SIGCOMM Computer Communication
Review 49 (1997) 49–64.

[11] J.H. Li, M. Yu, R. Levy, Distributed efficient clustering approach for ad hoc
and sensor networks, in: Proc International Conference on Mobile Ad-hoc and
Sensor Networks, 2005.

[12] J.H. Li, M. Yu, R. Levy, A. Teittinen, A mobility-resistant efficient clustering
approach for ad hoc and sensor networks, Mobile Computer Communications
Review 10 (2) (2006) 1–12.

[13] L. Liao,M.Manulis, Tree-based group key agreement framework formobile ad-
hoc networks, Future Generation Computer Systems 23 (6) (2007) 787–803.
[14] C.R. Lin, M. Gerla, Adaptive clustering formobile wireless networks, Journal on
Selected Areas in Communications 15 (7) (1997) 1265–1275.

[15] B. Schneier, Applied Cryptography, John Wiley and Sons, 1996.
[16] A. Sherman, D.McGrew, Key establishment in large dynamic groups using one-

way function trees, IEEE Transactions on Software Engineering 29 (6) (2003)
444–458.

[17] R. Sivakumar, B. Das, V. Bharghavan, The clade vertebrata: Spines and
routing in ad hoc networks, in: Proc. of the IEEE Symposium on Computer
Communications, ISCC’98.

[18] R. Sivakumar, B. Das, Spine-based routing in ad hoc networks, ACM/Baltzer
Cluster Computing Journal 1 (1998) 237–248.

[19] R. Sivakumar, P. Sinha, V. Bharghavan, CEDAR: A core-extraction distributed
ad hoc routing algorithm, IEEE Journal on Selected Areas in Communications
17 (8) (1999) 1454–1465.

[20] I. Stojmenovic, M. Seddigh, J. Zunic, Dominating sets and neighbors
elimination-based broadcasting algorithms in wireless networks, IEEE Trans-
actions on Parallel and Distributed Systems 13 (1) (2002).

[21] Y. Sun, K.J. Liu, Securing dynamic membership information in multicast
communication, in: Proc. of INFOCOM, 2004.

[22] M. Waldvogel, G. Caronni, D. Sun, N Weiler, B. Plattner, The versakey
framework: Versatile group key management, IEEE Journal on Selected Areas
in Communications 17 (9) (1999).

[23] D. Wallner, E. Harder, R. Agee, Key management for multicast: issues and
architecture. At: ftp://ftp.ietf.org/rfc/rfc2627.txt, 1997.

[24] J. Wu, H. Li, On calculating connected dominating sets for efficient routing in
ad hocwireless networks, Telecommunication Systems 18 (1/3) (2001) 13–36.

[25] O. Younis, S. Fahmy, HEED: A hybrid, energy-efficient,distributed clustering
approach for ad hoc sensor networks, IEEE Transactions onMobile Computing
3 (4) (2004).

[26] X. Zou, Y. Dai, X. Ran, Dual-level key management for secure grid
communication in dynamic and hierarchical groups, Future Generation
Computer Systems 23 (6) (2007) 776–786.

Jason H. Li received his B.E. and M.S. degrees in Electrical Engineering from the
Tsinghua University, Beijing, China in 1993 and 1996 respectively, and his Ph.D.
degree in Electrical and Computer Engineering, from the University of Maryland
at College Park, USA, in 2002, majoring in computer communication networks.

He is currently a senior research scientist at Intelligent Automation, Inc.,
Rockville, MD, USA. Prior to that, he was a senior research scientist in Hughes
Network Systems. His research interests lie in the general area of computer
communication networks, including network protocols, network security, network
management and control, and distributed software agents.

Dr. Li is a member of the IEEE.

Bobby Bhattacharjee received his B.E. degree in Computer Science andMathemat-
ics from Georgia College in 1994 and his Ph.D. degree in Computer Science from the
College of Computing at Georgia Tech. in 1999.

He is currently an Associate Professor in the Computer Science department at
theUniversity ofMaryland, College Park. His research interests are in the design and
implementations of scalable systems, protocol security, and peer-to-peer systems.

Dr. Bhattacharjee is a fellow of the Sloan Foundation, and amember of the ACM.

Miao Yu obtained her B.S and M.S. degrees in the field of engineering mechanics
from the Tsinghua University, Beijing, China, in 1996 and 1998 respectively, and her
Ph.D. degree in mechanical engineering from the University of Maryland at College
Park, USA, in 2002.

She has been an Assistant Professor in the Department of Mechanical
Engineering in the University of Maryland at College Park since January 2005.
Her research interests include smart sensors, sensor systems for military, civil,
mechanical, electrical, biochemical, and environmental applications, collaborative
sensor signal processing, and sensor networks.

Dr. Yu is a member of the OSA, SPIE, ASME, ASEE, and SEM. Her awards include
the Invention of the Year Award from the University of Maryland in 2002.

Renato Levy received his BSEE degree in electrical engineering from the Federal
University of Rio de Janeiro, Brazil, in 1986, his MBA degree from Institute for
Business and market economy, Brazil, in 1992, and his D.Sc. degree in computer
science from the George Washington University, USA, in 2004.

He is currently a principal scientist at Intelligent Automation, Inc., Rockville,
MD, USA. His research interests include distributed systems, embedded systems,
modeling and simulation, software engineering, and wireless networks.

Dr. Levy is a member of the IEEE and ACM.

ftp://ftp.ietf.org/rfc/rfc2627.txt

	A scalable key management and clustering scheme for wireless ad hoc and sensor networks
	Introduction
	Multi-tiered key management
	Description of the technical approach
	Member hierarchy
	Layer keys and subgroup keys
	Key distribution protocol
	Data transmissions

	Attack and security analysis
	Performance analysis
	Simulation results
	Simple cluster dynamics
	Batch updates

	Distributed efficient clustering approach
	Problem statement
	DECA clustering algorithm
	Correctness and complexity
	Performance evaluation

	Related work
	On key management
	On clustering protocols

	Conclusions
	Acknowledgment
	References

